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Abstract 

The aim of this note is to answer the following two problems: 

Problem 1: Given two positive integers ,, nm  such that .nm  What are the pairs 

( )ba,  of positive integers, such that ( )bam ,gcd=  and ( ) ?,lcm ban =  where 

( )ba,gcd  denotes the greatest common divisor of a and b; and ( )ba,lcm  denotes 
the least common multiple of a and b. 

Problem 2: How one can construct the pairs ( )ba,  with the above properties, i.e., 

( )bam ,gcd=  and ( ) ?,lcm ban =  
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1. Introduction 

The fundamental theorem of arithmetic is an important result that 
shows that the primes are building blocks of the integers. Here is the 
statement of the theorem: Every positive integer greater than one can be 
written uniquely as a product of primes [1]. The proofs of the results      
in this paper are mainly based on this theorem. 

Proof of Problem 1. The number of such pairs is ,2 1−k  where k is 

the number of prime divisors of .m
n  This can be shown as follows: 

Let ses
ee pppn 21
21=  be the prime divisors of ,mn  for distinct 

primes sppp ,,, 21  with exponents ,,,, 21 seee  which are all 

positive. As m divided n, we have ,21
21

sfs
ff pppm =  where .0 ii ef ≤≤  

Then ( )bam ,gcd=  and ( ),,lcm ban =  if and only if the following 

holds: ss xf
s

xfxf pppa +++= 2211
21  and ,2211

21
ss yf

s
yfyf pppb +++=  where 

iiii feyx −≤≤ ,0  for .,,2,1 si =  

Moreover, for each i, it must hold that ( ) ( )iiii feyx −= ,0,  or 

( ) ( ).0,, iiii feyx −=  Hence for each i with ,ii ef <  there are two choices 

for the pairs ( )., ii yx  The number of si,  with ii ef <  is equal to the 

number k of distinct prime divisors of .m
n  Hence the claim. But if we do 

not make a distinction between the pairs ( )ba,  and ( ),, ab  then we can 

divide by 2 and hence the number of distinct pairs is .22
2 1−= k
k

 

Example 1. Let 53230 ⋅⋅==m  and ,532450 22 ⋅⋅==n  then 

53 ⋅=m
n  has two distinct prime divisors. 
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Hence, there are 2 admissible pairs ( ) ( )22 532,532, ⋅⋅⋅⋅=ba  or 

( ) ( ),532,532, 22 ⋅⋅⋅⋅=ba  with ( )ba,gcd30 =  and ( ).,lcm450 ba=  

Proof of Problem 2. Let ke
k

ee pppm
n 21

21=  be the prime 

decomposition of the quotient .m
n  Set .ieii pq =  Then the admissible 

pairs ( )ba,  with ( )bam ,gcd=  and ( )ban ,lcm=  are precisely the 

pairs: 

,i
Si
qma ∏

∈
⋅=  where i

Si
q∏

∈
 denotes the product of { },Siqi ∈  and  

j
Sj
qmb ∏

∈
⋅=  for subsets S of { }.,,2,1 k  

There are k2  such subset S, and hence k2  such pairs ( )., ba  If we do 

not make a distinction between the pairs ( )ba,  and ( ),, ab  then we have 

12 −k  distinct pairs. 

Example 2. Let 23218 ⋅==m  and .532540 32 ⋅⋅==n  Hence 

532 ⋅⋅=m
n  with .5and,3,2 321 === qqq  So, we get 32  pairs ( )ba,  

with ( )ba,gcd18 =  and ( ),,lcm540 ba=  and they are listed below: 

{ } ( ) ( ),540,18, == baS  

{ } ( ) ( ),270,36,1 == baS  

{ } ( ) ( ),90,108,2,1 == baS  

{ } ( ) ( ),18,540,3,2,1 == baS  

{ } ( ) ( ),54,180,3,1 == baS  

{ } ( ) ( ),180,54,2 == baS  
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{ } ( ) ( ),36,270,3,2 == baS  

{ } ( ) ( ).108,90,3 == baS  
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